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We consider the Nernst effect in the underdoped regime of the cuprate high temperature superconductors
within the d-density wave �DDW� model of the pseudogap phase. By a combination of analytical and numeri-
cal arguments, we show that there is a robust low-temperature positive peak �i.e., maximum� in the temperature
dependence of the Nernst coefficient when the DDW state is ambipolar, i.e., when the broken symmetry
supports the coexistence of both electron- and holelike quasiparticles in the excitation spectrum, and the
electron pocket dominates at the low temperatures. In contrast, the Nernst coefficient is negative and there is
no such positive peak if the underlying state is nonambipolar, i.e., when it supports only one type of quasi-
particles. More generally, in the ambipolar state, the sign of the Nernst coefficient can be positive or negative
depending on the dominance of the electron or hole pockets, respectively, in the low temperature thermoelec-
tric transport. By modeling the pseudogap phase by a doping-dependent DDW order parameter with a Fermi
surface topology that supports both hole and electron pockets, and assuming energy-independent transport
scattering times, we analyze the evolution of the Nernst effect with doping concentration at low temperatures
in the cuprate phase diagram. Even though the chosen ambipolar DDW state with a specific Fermi surface
topology is not the only possible explanation of either the recent quantum oscillation experiments or the recent
observation of a negative Hall coefficient at low temperatures in the underdoped cuprates, it is at least one
possible state qualitatively consistent with both of these experiments. As such, the calculations in this paper
present at least one possible scenario for the observed enhanced Nernst signals in the underdoped cuprates.
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I. INTRODUCTION

Even after two decades of intensive efforts, the normal
state properties of the cuprate superconductors in the inter-
mediate range of hole doping, called underdoping, are still
poorly understood.1 At low doping, close to the undoped
antiferromagnetic phase,2 the behavior of the system is influ-
enced by the parent Mott insulator. At doping level above
that corresponding to the maximum superconducting transi-
tion temperature �Tc�, the mobile holes in the normal state
constitute a Fermi liquid.3 However, at the doping range in-
termediate between these two limits, the system evinces a
gap in the spectrum of unidentified origin �pseudogap� below
a temperature scale T��Tc. Many properties of the system in
this phase, called the pseudogap phase, are strongly influ-
enced by the gap, which is, similar to the superconducting
gap below Tc, anisotropic in the momentum space. An un-
derstanding of the pseudogap, and the associated loss of the
spectral weight from the Fermi surface, is widely believed to
hold the key to the high transition temperature in the
cuprates.1 The existence of the gap, even in the absence of
superconduction above Tc, have led many theorists to pro-
pose exotic non-Fermi-liquid states to be responsible for the
pseudogap in the cuprates. However, recent quantum oscilla-
tion experiments4–9 have found evidence of Fermi pockets
even in the enigmatic pseudogap phase. This has rekindled
the encouraging prospect of describing this phase in terms of
a state with a broken symmetry and a reconstructed Fermi
surface,5,10–15 treating its hole- and electronlike low energy
quasiparticles within a well-defined Fermi-liquid-like de-

scription. Note that the Fermi arc picture, as observed in the
angle resolved photoemission �ARPES� experiments,16 and
the Fermi pocket picture inferred from quantum oscillation
are at odds with each other, constituting a major puzzle in the
field. There have been many density wave scenarios in which
the coherence factors involved in ARPES, but not in quan-
tum oscillation calculations, destroy half of the pockets, giv-
ing the appearance of a Fermi arc.17,18 On the other hand,
ARPES has also revealed the existence of pockets in some
recent experiments.19,20

One of the important unsettled questions about the
pseudogap phase concerns the low temperature Nernst effect.
The Nernst effect experiments measure the transverse elec-
tric field response of a system to a combination setup of an
externally imposed temperature gradient and an orthogonal
magnetic field. Early experiments21–23 on the Nernst effect in
the cuprates revealed a very large signal �compared to that of
a Fermi liquid� near Tc, which is expected because of the
presence of the large number of mobile vortices at these
temperatures. The large signal, however, appeared to onset at
a temperature far above Tc, leading to speculations that there
are well-defined, vortex-type, excitations even at such high
temperatures. More recent experiments24 have claimed to
find two peaks in the temperature dependence of the Nernst
coefficient, one arising from the onset of a density wave
order in the pseudogap phase, and the other due to the onset
of the superconducting phase. There is also recent evidence
of finding a weak peak in the Nernst signal in the pseudogap
phase whose sign is opposite to that expected from the vor-
texlike excitations.25 These recent developments, therefore,
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point to the importance of the quasiparticle Nernst effect
associated with an underlying density wave state in the
pseudogap regime of the cuprates. While the experimental
scenario still needs to be settled, in this paper, we deduce the
full temperature and doping dependence of the quasiparticle
Nernst effect associated with the d-density wave state,26,27

which has otherwise shown encouraging consistency with
the anomalous phenomenology of the underdoped cuprates.

Since the pseudogap has a d-wave symmetry, one natural
density wave state, which could explain it is the
dx2−y2-density wave state.26,27 Indeed, much of the phenom-
enology of the cuprates in the underdoped regime can be
unified27–29 by making a single assumption that the ordered
DDW state is responsible for the pseudogap. The develop-
ment of the DDW order below optimal doping can lead to a
consistent explanation of numerous experimental observa-
tions including the abrupt suppression of the superfluid
density,30 and Hall number31 below optimal doping as well
as the more recent quantum oscillation experiments.10 Theo-
retically speaking, any appropriate Hamiltonian that leads to
d-wave superconductivity in the underdoped regime of the
cuprates will almost certainly favor DDW order as well.26,32

The DDW order might also have been directly observed in
two polarized neutron scattering experiments,33,34 even
though some other experiments failed to observe it.35–37 The
ordered ambipolar DDW state10 and its associated Fermi sur-
face topology �Fig. 1� are also qualitatively consistent with
the quantum oscillation experiments in the pseudogap re-
gime. The quantum oscillation experiments indicate that the
Fermi surface in the underdoped cuprates is made up of
small reconstructed Fermi pockets, giving rise to both hole
and electronlike charge carriers �quasiparticle ambipolarity�
in the excitation spectrum. Such a feature is quite robust for
the DDW state, in which, for generic values of the band
structure and gap parameters, the low energy spectrum con-
sists of both electron and holelike quasiparticles �Fig. 1�.

We will derive the implications of the above important
ingredient in the cuprate physics on the quasiparticle Nernst
coefficient of the DDW state. Using quasiclassical Boltz-
mann theory of transport, we will show that the recon-

structed Fermi surface in the DDW state and its low energy
quasiparticle ambipolarity can successfully explain the en-
hanced Nernst signals as found in the experiments at tem-
peratures much above Tc.

21–24 Even though strong electronic
interactions present in the host material are crucial for the
formation of the DDW state,26,32 deep in the ordered state the
quasiparticles can be assumed to be noninteracting �or
weakly interacting�. Therefore, we assume that the Boltz-
mann theory is still applicable to calculate the transport prop-
erties of the quasiparticles in the presence of a well-
developed DDW order parameter.

By a combination of analytical and numerical arguments,
we show that a low-temperature peak in the Nernst coeffi-
cient is very robust in the ambipolar d-density wave state. In
fact, the existence of the peak is solely due to the dominance
of the two types of quasiparticles �electron and hole� at dif-
ferent regimes of temperatures, and is insensitive to the mi-
croscopic details. Therefore, quasiparticle ambipolarity of
the underlying state, as indicated in the quantum oscillation
experiments, is also crucial for the low temperature peak in
the Nernst coefficient. We also find that the sign of the peak
of the Nernst effect can be positive or negative depending on
the dominance of the electron or hole pockets, respectively,
in the low temperature thermoelectric transport. By modeling
the pseudogap by a suitable, doping-dependent, d-density
wave order parameter, we analyze the doping dependent evo-
lution of the Nernst effect at a fixed low temperature in a
range of hole-concentrations in the underdoped regime of the
cuprate phase diagram. The quasiparticle Nernst effect has
also been recently studied38 within the stripe order39 model
of the underdoped cuprates.

The paper is organized as follows: Sec. II introduces the
commensurate DDW state and the corresponding Hartree-
Fock Hamiltonian. Section III gives a brief description of the
Nernst coefficient. Section IV is devoted to the temperature
dependence of the Nernst coefficient. We find, both numeri-
cally and analytically, that there is a positive peak of the
Nernst signal for the ambipolar DDW state when the electron
pocket dominates the transport at low temperatures. In con-
trast, there is no such peak of the Nernst effect if the under-
lying state is nonambipolar. In fact, the Nernst signal from
individual electron or hole pockets are both negative, while
the combination of them can lead to a positive peak. In Sec.
V, we discuss the doping dependence of the Nernst coeffi-
cient. A positive peak in the Nernst signal as a function of
hole doping is also found. Finally, we summarize and con-
clude in Sec. VI.

The main assumptions �to be explained in more detail
below� we use to derive the results of this paper are: �1�
Boltzmann theory is applicable to calculate the transport
properties of the DDW quasiparticles, �2� the transport scat-
tering lifetimes �e ,�h �Eqs. �8� and �9�� in the underdoped
regime are constant over the Fermi surface and are also taken
to be independent of energy in a small �temperature-
dependent� interval around the Fermi energy, �3� the under-
lying band structure consists of both electron and hole pock-
ets. The third assumption that of quasiparticle ambipolarity,
is the most crucial one for the qualitative robustness of the
temperature and doping-dependent peaks in the DDW Nernst
coefficient. Even though the existence of both types of qua-

π−

π

0

π π0π− π0
FIG. 1. �Color online� Electron and hole pockets in the ambipo-

lar DDW state for two different chemical potentials at zero tempera-
ture. Solid �blue� lines: �=−0.258 eV �x=10%�; Dashed �red�
lines: �=−0.238 eV �x=7%�.
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siparticles as in the ambipolar DDW state is likely not the
only explanation of either the quantum oscillation experi-
ments or the recent observation of negative Hall coefficients
at low T in the underdoped cuprates,5 the ambipolar DDW
state �with a specific Fermi surface topology given in Fig. 1�
is at least one possible scenario consistent with both of these
experiments. As such, the Nernst calculations in this paper
within the ambipolar DDW model give at least one possible
explanation of the enhanced Nernst signals in the under-
doped regime of the cuprates.

A part of the results �numerical calculation for the tem-
perature dependence of the Nernst coefficient� contained in
this paper were published earlier.41 In addition to giving a
more complete discussion of these previously published re-
sults, the present paper contains the following new results:
�1� an analytical explanation for the peak in the temperature
dependence of the Nernst signal, �2� a fact that even though
both electron and hole pockets can give negative Nernst ef-
fects individually, the combination of them can yield a posi-
tive peak as a function of temperature, and �3� the full dop-
ing dependence of the DDW Nernst coefficient in the
underdoped regime of the cuprates. Specifically, we show
that there is a well-defined positive peak in the DDW Nernst
coefficient as a function of hole doping, which is consistent
with the underdoped regime in the cuprate phase diagram.

II. COMMENSURATE DDW STATE

The commensurate DDW state26 is described by an order
parameter which is a particle-hole singlet in spin space,

�ĉk+Q,�
† ĉk,�� � iWk���, Wk =

W0

2
�cos kx − cos ky� . �1�

Here, ĉ† and ĉ are the electron creation and annihilation op-
erators on the square lattice of the copper atoms, k= �kx ,ky�
is the two-dimensional momentum, Q= �	 ,	� is the wave
vector of the density wave, and � and � are the spin indices.
For simplicity, we have taken 
=1 and the lattice constant
a=1. In Eq. �1�, iWk is the DDW order parameter with the
idx2−y2 symmetry in the momentum space. For Q= �	 ,	�, it
is purely imaginary26 and gives rise to spontaneous currents
along the bonds of the square lattice.

The Hartree-Fock Hamiltonian describing the mean-field
DDW state is given by,

Ĥ = �
k�RBZ

��k − � iWk

− iWk �k+Q − �
� , �2�

�k = − 2t�cos kx + cos ky� + 4t� cos kx cos ky , �3�

where �k is the band dispersion of the electrons, and � is the
chemical potential. The Hamiltonian density in Eq. �2� oper-

ates on the two-component spinor �̂k= �ĉk , ĉk+Q� defined on
the reduced Brillouin zone �RBZ� described by
kx
ky = 
	, and can be expanded over the Pauli matrices �̂

and the unity matrix Î,

Ĥk = w0�k�Î + w�k� · �̂, w0 =
�k + �k+Q

2
− � , �4�

where, w1=0, w2=−Wk, w3=�k−�k+Q /2. The spectrum of
the Hamiltonian consists of two branches with the eigenen-
ergies given by,

E
�k� = w0�k� 
 w�k� , �5�

where, w�k�= �w�k��. For a generic set of band structure pa-
rameters, we use t=0.3 eV, t�=0.3t,40 and � corresponding
to a nonzero hole doping, x, appropriate for the underdoped
regime of the cuprates, the reconstructed Fermi surface con-
sists of two hole pockets near the �	 /2, 
	 /2� points and
one electron pocket near the �	 ,0� point in the reduced Bril-
louin zone. The hole and the electron pockets of the DDW
state are shown in Fig. 1 for two different values of the
chemical potential corresponding to different values of the
hole doping. The existence of both hole and electronlike ex-
citations in the quasiparticle spectrum generically makes this
state an ambipolar state.

III. NERNST COEFFICIENT

In Nernst experiments,21–24,42 a temperature gradient,
−�T, is applied on the sample along the x̂ direction. For such
a temperature gradient, and with a magnetic field B along the
ẑ direction, the charge current due to quasiparticles along x̂
driven by −�T produces a balancing electric field E. The
total charge current in the presence of E and −�T is thus
given by,

Ji = �ijEj + �ij�− � jT� , �6�

where �ij and �ij are the electric and the thermoelectric con-
ductivity tensors, respectively. In the experiments, J is set to
zero and the Nernst coefficient can be written as,

�N =
Ey

�− �T�xB
=

�xy�xx − �xx�xy

�xx
2 + �xy

2 , �7�

where �ij and �ij are the electric and the thermoelectric con-
ductivity tensors, respectively.

For the direction of the temperature gradient as above �T
decreases in the positive x̂ direction�, and B in the positive ẑ
direction, the vortices of a superconductor produce a Nernst
signal in the positive ŷ direction. This is because, due to
entropic reasons, the vortices flow toward the cooler end.
Due to the Josephson effect, the mobile vortices then pro-
duce a transverse electric field, E=B�v, which is in the
positive ŷ direction. Note that quasiparticles in the same
setup, depending on their effective charge, would produce a
transverse electric field in positive or negative ŷ direction.
Because of the uniqueness of the direction of the vortex
Nernst signal,42 a transverse electric field in the positive ŷ
direction is taken as the positive Nernst signal. According to
this sign convention, the Nernst coefficient of quasiparticles
is positive if it is calculated to be so according to Eq. �7�,
where �N is defined in terms of Ey. This modern sign con-
vention is opposite to the older convention sometimes also
used in the literature.43 In the Nernst experiments on the
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high-Tc cuprates, the modern sign convention is universally
used so that the vortex signal is positive by definition.

We calculate the off-diagonal element of the conductivity
tensor, �xy, by using the solution of the semiclassical Boltz-
mann equation:44

�xy��� = e3B�e
2	 d2k

�2	�2
 �E+�k�
�kx

�E+�k�
�ky

�2E+�k�
�kx � ky

− � �E+�k�
�kx

�2�2E+�k�
�ky

2 ��−
� f�E+�k� − ��

�E+
�

+ �E+ → E−;�e → �h� . �8�

Here, the momentum integrals are over the reduced Brillouin
zone. In the DDW band-structure, the electron pocket near
�	 ,0� is associated with the upper band, E+�k�. The first
integral in Eq. �8�, therefore, embodies the contribution to
�xy due to the electronlike quasiparticles. We have denoted
the corresponding transport scattering time as �e, which, for
simplicity, is taken to be independent of the location on the
electron Fermi line. The second integral in Eq. �8�, where �e
is replaced by the scattering time for the holelike careers, �h,
calculates the contribution to �xy from the hole pockets. �h is
also taken to be constant everywhere on the hole Fermi lines.
Even though both the scattering times can be
energy-dependent,45 since the Fermi surface integrals in Eqs.
�8� and �9� �see below� extend only over a small
�temperature-dependent� interval around the Fermi energy,
we assume �e and �h to be energy independent in our calcu-
lations.

In general, there is no obvious reason to expect �e=�h. For
a consistent interpretation of the Hall effect experiments,5 it
has been recently argued that the scattering times, which are
directly proportional to the career mobilities, may in fact be
different for the electron and the holelike charge carriers.
Since at low temperatures the Hall coefficient is negative,
Ref. 5 argues that, at least at low T, �e��h. With the above
definition of the parameters, the diagonal element of the con-
ductivity tensor is given by,44

�xx��� = e2�e	 d2k

�2	�2� �E+�k�
�kx

�2�−
� f�E+�k� − ��

�E+
�

+ �E+ → E−;�e → �h� . �9�

From the solution of the Boltzmann equation at low T, the
thermoelectric tensor �ij is related to the conductivity tensor
�ij by the Mott relation:46

�ij = −
	2

3

kB
2T

e

��ij

��
. �10�

Here, e�0 is the absolute magnitude of the charge of an
electron. Using Eq. �7�, the formula for the Nernst coefficient
reduces to,47

�N = −
	2

3

kB
2T

eB

��H

��
. �11�

Here,

�H = tan−1��xy

�xx
� . �12�

Using Eqs. �8�, �9�, and �11� and with reasonable phenom-
enological assumptions about the temperature dependence of
the scattering times and the DDW order parameter, we can
now calculate �N as a function of T in the ambipolar DDW
state. Using a phenomenological ansatz for the doping de-
pendence of the DDW order parameter, and computing the
chemical potential self-consistently, we can also use the
same equations to calculate the doping dependence of �N.
This way we can evaluate the evolution of the Nernst coef-
ficient in the cuprate phase diagram within the ambipolar
DDW model.

It is important to emphasize that the negative Hall coeffi-
cient at low T, as seen in the presence of strong magnetic
fields in Ref. 5, does not automatically imply the presence of
the electron pockets at low enough magnetic fields. How-
ever, conversely, the existence of the electron pockets in the
band-structure is at least one possible scenario consistent
with the negative Hall coefficient. In addition, the existence
of the electron pockets is also qualitatively consistent with
the observed frequencies in the recent quantum oscillation
experiments. Our calculated enhanced Nernst coefficients are
for the ambipolar DDW state which has both electron- and
holelike quasiparticles in the excitation spectrum. As such,
the results of this paper give at least one possible explanation
of the observed enhanced Nernst signals in the underdoped
cuprates.

IV. TEMPERATURE DEPENDENCE OF THE
NERNST COEFFICIENT

A. Phenomenological temperature dependence of
the parameters

In the first step in the evaluation of the temperature de-
pendence of the Nernst coefficient, we have to make suitable
assumptions for the behavior of the scattering times �e and �h
with temperature. An important hint regarding this can be
obtained from the recent Hall effect experiments in Ref. 5. In
these experiments, the normal state Hall coefficient,

RH =
�xy

B��xx�2 , �13�

has been measured as a function of T in three different
samples of underdoped YBa2Cu3Ox. In all three samples, RH
is large and positive above T�, which is consistent with the
systems being moderately hole doped. RH, however, shows a
sharp decline below T�, and subsequently changes its sign
from positive �hole-dominated� to negative �electron-
dominated� at a crossover temperature T0�T�. This anoma-
lous T-dependence of the Hall coefficient can be understood
naturally if the state in question below T� is inherently am-
bipolar, and the mobilities of the oppositely charged quasi-
particles are assumed to be unequal and changing with tem-
perature.

With Eqs. �8� and �9�, we can calculate the contributions
of the electron and hole pockets of the DDW state to the
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normal state Hall coefficient. The magnitudes of the indi-
vidual contributions depend on the size and curvature of the
respective pockets, but in our calculations the sign of the
contribution is positive for the holelike quasiparticles and
negative for the electronlike quasiparticles. For �e=�h, in
which case the formula for RH is independent of the scatter-
ing time, and for a generic set of parameters �t , t� ,W0� con-
sistent with the quantum oscillation experiments in
YBa2Cu3Ox,10,17 the size and curvature of the hole pockets
are much bigger than those of the electron pocket. This im-
plies that, for �e��h, the sign of the overall RH is positive.31

We have checked that reasonable modifications of the band
structure parameters in the cuprate phase diagram cannot
change this result. Therefore, within the Boltzmann theory of
transport, the only source of the strong T-dependence of RH,
as observed in the experiments, must come from the unequal
temperature dependence of �e and �h. If at high temperatures
�T�T0� �e��h, the Hall coefficient is positive. On the other
hand, if �e��h for T�T0, RH can become negative at low T.
Note that a higher mobility of the electronlike quasiparticles
at low T is also consistent with the frequency observed in the
quantum oscillation experiments.5,10 An independent, micro-
scopic, justification of the higher lifetime of the electronlike
quasiparticles at low T and in the presence of a magnetic
field also follows by considering the scattering of both types
of quasiparticles by vortices at low temperatures.48 Because
of the difference of the effective masses between the DDW
quasiparticles near the antinodal and the nodal regions in the
Brillouin zone, the electron lifetime due to vortex scattering
can be significantly higher than the hole lifetime at low T in
the presence of a magnetic field.49

On the above grounds, we choose the minimal
T-dependence of the scattering times


�e
−1 = Ae + BekBT �14�

and


�h
−1 = Ah + BhkBT . �15�

Even though such a linear T-dependence of the scattering
times is nominally consistent with the linear T-dependence
of the resistivity in a regime close to the optimal doping in
the cuprate phase diagram, we emphasize that our motivation
for the assumptions about �e and �h is strictly phenomeno-
logical. With these choices, the calculated RH=�xy /B�xx

2 for
the ambipolar DDW state as a function of T with an assumed
mean field T-dependence of the DDW order parameter,

W0�T� = W0
1 −
T

T�
�16�

�T��110 K�, qualitatively agrees with the recent
experiments.5 We estimate the values of the temperature in-
dependent parameters Ae ,Be ,Ah ,Bh in Eqs. �14� and �15�
from the qualitative agreement of the Hall effect experiments
in the underdoped cuprates. We do this by setting the total RH
to zero at T=T0=30 K. This provides one equation relating
the four unknown constants. Then, we assume that at high
temperatures �e approximately equals �h, which stipulates
Be�Bh. We take them both to be equal to 1 for simplicity.

Therefore, we are left with two unknowns Ae and Ah and
only one equation relating them, which leaves some residual
freedom in choosing the values of these constants. However,
we have checked that our conclusions for the behavior of �
with T are robust to any reasonable variation in the
T-dependence of �e ,�h and W0�T� as long as they satisfy the
experimental constraints set by the temperature dependence
of RH.

We now use Eqs. �8�, �9�, and �11� to calculate �N as a
function of T for a specific value of the hole doping x
=10%. Using a mean field T-dependence of W0�T� and the
phenomenological form of �e�T� and �h�T� above, we plot in
Fig. 2 the calculated �N in the ambipolar DDW state as a
function of T for x=10%. It is clear from Fig. 2 that the
Nernst coefficient has a pronounced low temperature peak
which, as we argue below, is a direct manifestation of the
quasiparticle ambipolarity of the DDW state.

B. Sign and temperature dependence of Nernst signal from
individual hole and electron pockets

To elucidate the importance of the quasiparticle ambipo-
larity in the temperature dependence of �N, let us first con-
sider the Nernst effect due to the quasiparticles associated
with a hole pocket. In the presence of only hole pockets in
the excitation spectrum, we can write the Nernst coefficient
as

�N
h = − C�hT

�

��
�̄h, �17�

where we take

�ν

T
FIG. 2. Plot of the Nernst coefficient, �N, versus temperature T

for the ambipolar DDW state. The Nernst coefficient in V K−1 T−1

can be derived by multiplying the dimensionless �N in the figure
with the quantity 2	2kBa2 /3
�138 nV /KT. Here, the lattice con-
stant is taken as a�0.4 nm, and the factor 2 is used to account for
the contributions from the two spin components. The peak value is
�70 nV /KT at a temperature T�T�. The unit for T along the
horizontal axis is K. The hole doping x=10%. The sign of �N near
its peak is positive. As the superconducting Tc �not shown here� is
approached, the normal state �N as shown here will be cut off by the
large Nernst signal of the mobile vortices associated with the super-
conductor. The parameters used in the plot are T�=110 K,
Ae /kB=58 K, Ah /kB=253 K, t=0.3 eV, t�=0.3t, Be=Bh=1,
W0=0.1 eV, �=−0.258 eV.

QUASIPARTICLE NERNST EFFECT IN THE CUPRATE… PHYSICAL REVIEW B 81, 104517 �2010�

104517-5



�̄h �
�̄xy

h

�̄xx
h , ��̄xy

h � �̄xx
h � , �18�

�̄xy
h = �xy

h /�h
2, �̄xx

h = �xx
h /�h, �19�

and C is a numerical constant, C= �	2 /3��kB
2 /eB�. �̄xy

h and
�̄xx

h �superscript h indicates the contribution from the holelike
quasiparticles� depend only on the hole Fermi surface inte-
grals in Eqs. �8� and �9�, respectively. We have rewritten the
expression for �N �Eq. �11�� in Eq. �17� so that the manipu-
lation of the explicit T-dependence of the scattering time
becomes easier. Similarly, when there are only electronlike
quasiparticles in the system, the Nernst coefficient can be
written as,

�N
e = − C�eT

�

��
�̄e, �20�

where �̄e� �̄xy
e / �̄xx

e , �̄xy
e =�xy

e /�e
2, �̄xx

e =�xx
e /�e, and the super-

script e indicates electronlike quasiparticles.
In the following analysis, we will frequently need the sign

of the quantities, d�̄xy
h /d� ,d�̄xx

h /d�, and their counterparts
for the electron pockets. These can be deduced by noting the
changes in the shapes of the hole and the electron pockets
with increasing � �� becoming less negative�. To do this, we
recall that the magnitude of �̄xy increases with the curvature
of the relevant pocket, and the magnitude of �̄xx increases
with its area. In Fig. 1, we plot the electron and hole pockets
for two different values of the chemical potential. As we can
see, as � increases, the hole pockets become more elliptical
�i.e., the curvature rises and the circumference decreases�,
thus d�̄xy

h /d��0 and d�̄xx
h /d��0. On the other hand, for

the electron pocket, the size of the pocket increases with
increasing �, leading to d�̄xx

e /d��0. It is not clear, how-
ever, how the curvature of the electron pocket varies with �.
In Fig. 3, we plot the d�̄xy

e /d� and d�̄xy
h /d� for x=10%. We

clearly see that d�̄xy
e /d��0 and d�̄xy

h /d��0. For the hole
pockets, the above behaviors lead to

��̄h

��
=

1

��̄xx
h �2�d�̄xy

h

d�
�̄xx

h −
d�̄xx

h

d�
�̄xy

h � � 0. �21�

This implies that the hole pockets lead to a negative Nernst
signal, as seen from Fig. 4. The analysis of the sign of the
Nernst coefficient from the electron pocket is not so straight-
forward, and will be discussed later.

Taking the temperature derivative of �N
h in Eq. �17�, we

get,

C−1��N
h

�T
= − �h

��̄h

��
− T

��h

�T

��̄h

��
− T�h

�

�T

��̄h

��

= −
1

T + Ah
�1 −

T

T + Ah
� ��̄h

��
− T�h

�

�T

��̄h

��
,

�22�

where we take Bh=1. In Eq. �22�, the first term on the right
hand side is the result of the explicit T-dependence of �N via

the scattering time and the explicit factor of T. Since ��̄h /��
is positive, this term is strictly negative. The second term in
Eq. �22� depends on the implicit T-dependence of �N

h via the
T-dependence of W0. To calculate this term, we write,

�

�T

��̄h

��
=

�

��

��̄h

�T
=

�

��
� ��̄h

�W0

− 1

2�T� − T�1/2� , �23�

where we have used the mean field ansatz for the
T-dependence of the amplitude of the DDW order parameter.
To calculate the right hand side, noting that T is independent
of �, we only need to calculate,

�

��

��̄h

�W0
=

�

��

1

�̄xx
h �d�̄xy

h

dW0
− �̄hd�̄xx

h

dW0
�

� −
1

��̄xx
h �2

��̄xx
h

��
�d�̄xy

h

dW0
− �̄hd�̄xx

h

dW0
� −

1

�̄xx
h

��̄h

��

d�̄xx
h

dW0
.

�24�

T

µ
σ
d
d xy

FIG. 3. Plot of d�̄xy /d� versus temperature for the electron and
hole pockets using Eqs. �8� and �19�. The unit of T is K, and the unit
for d�̄xy /d� is unimportant for the purpose of this illustration.
x=10%. Dashed line: electron; Solid line: hole.

T

�ν
µ∂
Θ∂

T

(a) (b)

FIG. 4. �a� Plot of the Nernst coefficient, �N, versus temperature
for the electron �solid line� and hole �dashed line� pockets
separately. The parameters used in the plot are same as those
in Fig. 2. Nernst coefficient in V K−1 T−1 can be derived by multi-
plying the dimensionless �N in the figure with the factor
2	2kBa2 /3
�138 nV /KT. The temperature in the horizontal axis
is in K. The hole doping x=10%. �b� Plots of �� /�� versus tem-
perature for the electron and hole pockets separately. The plots in
�a� are obtained by multiplying these values by −kBT in eV.
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In the derivation of the above equation, we neglect the
small terms �� /����d�̄xy

h /dW0� and �� /����d�̄xx
h /dW0� �see

Eq. �25� below for justification�. It is clear that we first need
the leading W0-dependence of the Fermi surface integrals �̄xy

h

and �̄xx
h . We find that the leading W0 dependence of these

integrals is linear. This linear dependence arises from the
integration region around the so-called hot spots, points on
the Fermi surface which also fall on the surface of the RBZ.
On the surface of the RBZ �kx
ky = 
	�, the dominant part
of the band structure, −2t�cos kx+cos ky�=0. The linear W0
dependence of �̄xy

h and �̄xx
h comes from the region around the

hot spots which satisfies

t�cos kx + cos ky� �
W0

4
�cos kx − cos ky� ,

which has a size �tW0. Since the relevant integration region
is itself O�W0�, by expanding the integrand in Eq. �8� to
zeroth order in W0, we get the leading W0 dependence of �̄xy

h

as,

�̄xy
h � 64tW0t�3 sin2 kx cos kx cos ky . �25�

The above is negative since cos kx=−cos ky on the surface of
RBZ. Therefore, it follows that, d�̄xy

h /dW0�0. From
similar manipulations, it is straightforward to show that

d�̄xx
h /dW0�0. We also note that, in Eq. �24�, �̄h itself is

positive for the hole pockets ��̄h has the same sign as the
Fermi surface integral for the Hall conductivity, �̄xy

h , which
is, of course, positive for the hole pockets�. Furthermore,

noting that ��̄xx
h /���0 and ��̄h /���0 for the hole pocket,

we infer from Eq. �24� that �� /������̄h /�W0��0. Therefore,
from Eq. �23�,

�

�T

��̄h

��
=

�

��

��̄h

�T
� 0 �26�

for T�T�. Finally, using Eq. �22�, we conclude that ��N
h /�T

is negative definite for the hole pockets. This implies that, for
only hole-type quasiparticles in the DDW state, the
temperature-derivative of the Nernst coefficient can never be
zero: there is no low temperature peak of �N

h �T�. This ana-
lytical result has been confirmed by the numerical results, as
seen in Fig. 4.

In contrast to �N
h , the sign of �N

e is hard to determine
analytically. The reason is that, in

��̄e

��
=

1

��̄xx
e �2�d�̄xy

e

d�
�̄xx

e −
d�̄xx

e

d�
�̄xy

e � ,

the terms �d�̄xy
e /d���̄xx

e ��0� and −�d�̄xx
e /d���̄xy

e ��0� have
opposite signs, and the sign of �N

e should be determined by
the relative magnitudes of these two terms. For the band
structure parameters used here, we find that �N

e is negative, as
seen in Fig. 4. This implies that, for the electron pocket, the

second term in ��̄e /�� dominates over the first one, leading

to a positive ��̄e /��.

C. Temperature dependence of the Nernst coefficient from
ambipolar DDW state

In view of the above analysis, a natural question is then
why two individually negative contributions from the elec-
tron and the hole pockets “add up” to a positive Nernst signal
at low temperatures when the two types of pockets coexist.
The underlying reason can be most clearly expressed by
writing down the formula for ��t /��, where the superscript
“t” now represents the total Nernst effect as given by multi-
plying ��t /�� by −CT,

��t

��
=

1

��xx
t �2�d�xy

t

d�
�xx

t −
d�xx

t

d�
�xy

t � . �27�

Here, �xx
t =�xx

h +�xx
e and �xy

t =�xy
h +�xy

e . Because of the ambi-
polar spectrum, the second term in Eq. �27� is much smaller
than the first one �since the total Hall conductivity, �xy

t , is
small�, and the sign of ��t /�� is entirely determined by the
first term. It follows that if the contribution from the electron
pocket dominates over that from the hole pocket, then
��t /�� is negative, since the first term in Eq. �27� is nega-
tive for the electron pocket. On the other hand, if the contri-
bution from the hole pocket is greater than that from the
electron pocket, then ��t /�� is positive because d�xy

h /d� is
positive for the hole pocket, see Fig. 3. In our calculations,
the former is the situation at low T, and �N is positive at low
temperatures. At high temperatures, the contribution from the
hole pockets dominates transport because of their larger size
and the first term in Eq. �27�, and consequently ��t /��,
becomes positive, leading to a negative Nernst signal. There-
fore, �N, which is zero at T=0, first increases at low tempera-
tures and then decreases at high temperatures, yielding a
positive peak if there are both electron- and hole-type quasi-
particles present in the spectrum at the same time.

In the context of the cuprates, at low temperatures, the
electron pocket dominates via �e��h, and ��N /�T�0. On
the other hand, at high temperatures, the hole pockets domi-
nate when �e��h. In this case, we have ��N /�T�0. In prac-
tice, determining an analytical expression for the peak tem-
perature by solving the implicit equation, ��N /�T=0, is not
very illuminating, since it depends on many parameters.
However, we have conclusively shown here that the exis-
tence of a low temperature positive peak in the Nernst coef-
ficient is a robust consequence of quasiparticle ambipolarity,
and, therefore, is independent of any assumptions about the
microscopic parameters. Furthermore, the sign of the peak
value of �N�T� depends on the relative dominance of the
electron and the hole pockets at different regimes of T. For
example, if the hole �electron� pockets were dominant at low
�high� temperatures, the peak value of �N�T� would be nega-
tive. However, in the experimentally relevant case where the
electron pocket is more dominant at low T �so that the zero
temperature Hall coefficient is negative�, the peak is on the
positive side.

V. DOPING DEPENDENCE OF THE
NERNST COEFFICIENT

To calculate the Nernst coefficient as a function of doping
in the underdoped regime, we have to start by assuming a
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phenomenological doping dependence of the DDW order pa-
rameter W0. Using the values of the doping-dependent am-
plitude of the DDW order parameter and the set of param-
eters t , t� ,x, we can calculate the chemical potential � as a
function of x. This way, the Nernst coefficient can be calcu-
lated as a function of the doping in the pseudogap phase. In
the absence of a concrete theoretical result for the doping
dependence of the DDW order parameter, we assume the
mean-field doping dependence,

W0�x,T� = W0�x0,T��

xmax − x

xmax − x0
if x � x0


 x − xmin

x0 − xmin
if x � x0

� , �28�

where x0=10% is the doping percentage that yields the maxi-
mum DDW order. This kind of a doping dependence is
physically motivated, since we expect the DDW order to
gradually weaken for both high and low values of x. We
choose xmin=4% and xmax=17% as the minimum and the
maximum doping where the DDW order may exist. We use
the value of x and the set of parameters t , t� ,W0�x ,T=0� to
self-consistently calculate the value of �, which determines
the size and curvature of the hole and the electron pockets.

To illustrate the behavior of �N with underdoping, we plot
in Fig. 5 the temperature dependence of �N for x=7%. It is
clear that the Nernst signal remains negative in a wider range
of temperatures at this value of hole-doping than that at
x=10%. However, there is still a small low temperature peak
in the positive side because of the larger mobility of the
electron pocket at low temperatures. Since the Nernst effect
at temperatures close to and below the superconducting Tc is
almost entirely dominated by the vortex Nernst signal, the
low temperature positive peak due to the DDW quasiparti-
cles may not be visible in the experiments. In this case, the
DDW quasiparticle Nernst effect may appear negative above
the superconducting Tc.

In Fig. 6, we plot the Nernst coefficient at a fixed low

temperature as a function of hole doping x. To construct this
plot, we have taken the transition temperature of the ordered
DDW state to scale with the value of the zero temperature
order parameter, as would be expected from the mean field
theory. This implies that T��x� has been determined via

T��x� =
W0�x,T = 0�
W0�x0,T = 0�

T��x0� . �29�

It is clear that there is a peak of the Nernst signal at
x=10% on the positive side, in agreement with the Nernst
effect experiments21–23 in the cuprates. The signal weakens
on either side of x=10% because the magnitude of the DDW
order parameter weakens with x on either side of this value
of doping.

VI. CONCLUSION

In conclusion, we show that the Nernst signal from an
ambipolar DDW state has a robust low temperature peak
which occurs below its mean field transition temperature.
The onset of the Nernst signal, however, occurs at the tran-
sition temperature itself, which may account for the sizable
Nernst effect found in the experiments in the pseudogap
phase of the high temperature cuprate superconductors. The
sign of the peak value of the Nernst coefficient can be posi-
tive or negative depending on whether electron or hole pock-
ets, respectively, dominate the low temperature thermoelec-
tric transport. For the experimental situation in some
cuprates, where the low temperature Hall coefficient is found
to be negative indicating the dominance of the electron
pocket in transport, we find that the peak in the temperature
dependent Nernst coefficient is on the positive side. In con-
trast, there is no such peak when the DDW state is nonam-
bipolar. In this case, with only one type of pockets in the
excitation spectrum, the Nernst signal is negative for both
electron and hole pockets. However, quite surprisingly, we
find that these two individual negative contributions “add
up” to produce a net positive Nernst effect in the ambipolar
DDW state. We prove these results both by numerical calcu-

FIG. 5. The Nernst coefficient as a function of temperature for
x=7%. Nernst coefficient in V K−1 T−1 can be derived by multiply-
ing �N with the factor 2	2kBa2 /3
�138 nV /KT. The temperature
is in K. The corresponding �=−0.238 eV, T�=80 K. We see that
the Nernst signal is negative in a broader temperature regime than
that for x=10%.
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FIG. 6. Plot of the Nernst coefficient, �N, at a fixed low tem-
perature, T=58 K, versus the hole doping x for the ambipolar
DDW state. Nernst coefficient in V K−1 T−1 can be derived by mul-
tiplying �N with the factor 2	2kBa2 /3
�138 nV /KT. The tem-
perature is in K. Nernst coefficient shows a pronounced peak at a
hole doping x=10%, where the DDW order parameter is assumed
to be the largest. The sign of �N near its peak is positive.
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lations as well as analytical arguments, which establishes the
robustness of the existence of the low temperature peak,
making it insensitive to any reasonable variations in the mi-
croscopic parameters.

With a reasonable assumption about the doping depen-
dence of the DDW order parameter, which is physically mo-
tivated and stipulates weakening of the order parameter with
hole doping on either side of the underdoped regime, we find
that the low temperature Nernst coefficient also has a pro-
nounced peak as a function of hole concentration. The peak
of the Nernst coefficient coincides with the value of doping
where the DDW order parameter is assumed to be the stron-
gest, and the signal weakens on either side of this value of
the hole concentration. At low value of the hole doping, we
find that the Nernst coefficient remains negative over a wider
range of temperature than at moderate underdoping,
x=10%.

To derive these results, we model the pseudogap phase by
a doping-dependent DDW order parameter and assume trans-
port scattering times which are constant throughout the

Fermi surface and also independent of energy in a small
�T-dependent� energy interval around the Fermi energy. Even
though our chosen ambipolar DDW state �with its specific
Fermi surface topology �Fig. 1� is not the only possible state
consistent with either the recent quantum oscillation
experiments4–9 or the observed negative Hall coefficient5 in
the underdoped cuprates, it is at least one possible state
qualitatively consistent with both. As such, the calculations
for the Nernst coefficient in the ambipolar DDW state given
in this paper present at least one possible scenario for the
observed enhanced Nernst signals in the underdoped cuprate
superconductors.
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